Solving Box-Constrained Nonconvex Quadratic Programs
نویسندگان
چکیده
We present effective computational techniques for solving nonconvex quadratic programs with box constraints (BoxQP). We first observe that cutting planes obtained from the Boolean Quadric Polytope (BQP) are computationally effective at reducing the optimality gap of BoxQP. We next show that the Chvátal-Gomory closure of the BQP is given by the odd-cycle inequalities even when the underlying graph is not complete. By using these cutting planes in a spatial branch-and-cut framework, together with an integrality-based branching technique and a strengthened convex quadratic relaxation, we develop a solver that can effectively solve a wellknown family of test instances. Most of our computational techniques have been implemented in the recent version of CPLEX and lead to significant performance improvements on nonconvex quadratic programs with
منابع مشابه
Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound
We consider a recent branch-and-bound algorithm of the authors for nonconvex quadratic programming. The algorithm is characterized by its use of semidefinite relaxations within a finite branching scheme. In this paper, we specialize the algorithm to the box-constrained case and study its implementation, which is shown to be a state-of-the-art method for globally solving box-constrained nonconve...
متن کاملA branch-and-cut algorithm for nonconvex quadratic programs with box constraints
We present the implementation of a branch-and-cut algorithm for bound constrained nonconvex quadratic programs. We use a class of inequalities developed in [12] as cutting planes. We present various branching strategies and compare the algorithm to several other methods to demonstrate its effectiveness.
متن کاملA simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs
We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to ...
متن کاملSemidefinite-Based Branch-and-Bound for Nonconvex Quadratic Programming
This paper presents a branch-and-bound algorithm for nonconvex quadratic programming, which is based on solving semidefinite relaxations at each node of the enumeration tree. The method is motivated by a recent branch-and-cut approach for the box-constrained case that employs linear relaxations of the first-order KKT conditions. We discuss certain limitations of linear relaxations when handling...
متن کاملA spatial branch-and-cut method for nonconvex QCQP with bounded complex variables
We develop a spatial branch-and-cut approach for nonconvex Quadratically Constrained Quadratic Programs with bounded complex variables (CQCQP). Linear valid inequalities are added at each node of the search tree to strengthen semidefinite programming relaxations of CQCQP. These valid inequalities are derived from the convex hull description of a nonconvex set of 2 × 2 positive semidefinite Herm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016